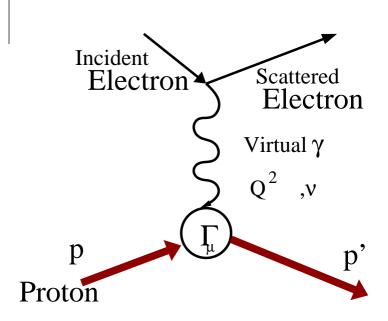

Recent and future measurements of nucleon form factors

Mark K. Jones, Jefferson Lab


2007 Hall C Summer Workshop

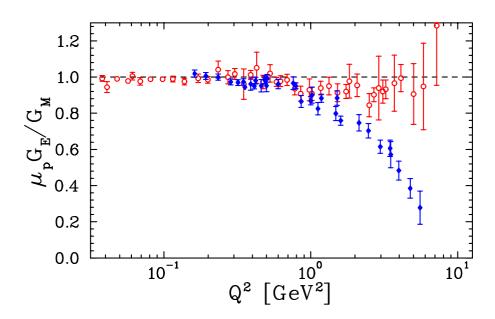
Elastic Electron-Nucleon Scattering

Nucleon vertex:
$$\Gamma_{\mu}(p',p) = \underbrace{F_1(Q^2)}_{Dirac} \gamma_{\mu} + \underbrace{\frac{i\kappa_p}{2M_p}}_{Pauli} \underbrace{F_2(Q^2)}_{Pauli} \sigma_{\mu\nu} q^{\nu}$$

$$G_E(Q^2) = F_1(Q^2) \cdot \kappa_N \tau \, F_2(Q^2)$$

$$G_M(Q^2) = F_1(Q^2) + \kappa_N \, F_2(Q^2) \, , \tau = \frac{Q^2}{4M_N^2}$$
 At $Q^2 = 0$ $G_{Mp} = 2.79$ $G_{Mn} = -1.91$
$$G_{Ep} = 1$$
 $G_{En} = 0$

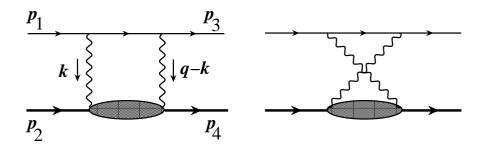
Elastic Electron-Nucleon Scattering



Nucleon vertex:
$$\Gamma_{\mu}(p',p) = \underbrace{F_1(Q^2)}_{Dirac} \gamma_{\mu} + \underbrace{\frac{i\kappa_p}{2M_p}}_{Pauli} \underbrace{F_2(Q^2)}_{Pauli} \sigma_{\mu\nu} q^{\nu}$$

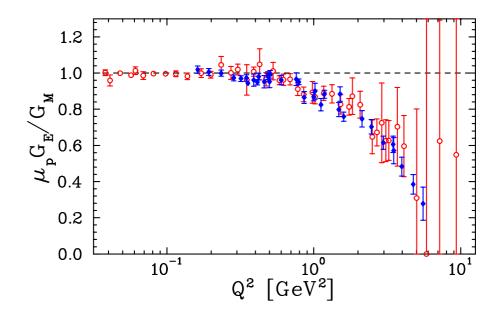
$$G_E(Q^2) = F_1(Q^2) \cdot \kappa_N \tau \, F_2(Q^2)$$

$$G_M(Q^2) = F_1(Q^2) + \kappa_N \, F_2(Q^2) \, , \tau = \frac{Q^2}{4M_N^2}$$
 At $Q^2 = 0$ $G_{Mp} = 2.79$ $G_{Mn} = -1.91$
$$G_{Ep} = 1$$
 $G_{En} = 0$

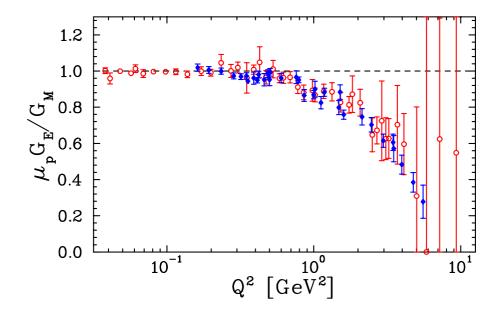

- Measure cross section $\sigma \propto \frac{\epsilon}{\tau} G_E^2 + G_M^2$
- Measure recoil polarization in $p(\vec{e}, e'\vec{p})$

$$\frac{G_E}{G_M} = -\frac{P_T}{P_L} \frac{(E_e + E_{e'})}{2M} \tan(\frac{\theta}{2})$$

 $m{\mathcal{G}}_E/G_M$ extracted from cross sections and polarization transfer differ.

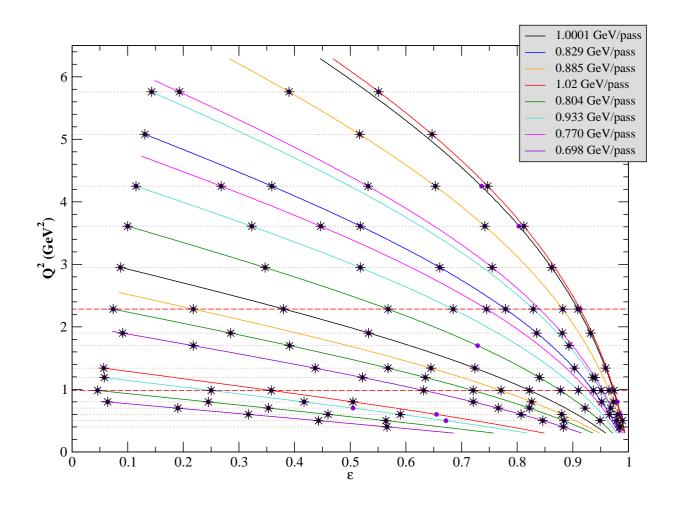


- $m{\mathcal{G}}_E/G_M$ extracted from cross sections and polarization transfer differ.
- ullet Most likely explanation is missing two-photon exchange (TPE) amplitude in extracting G_E/G_M from cross sections

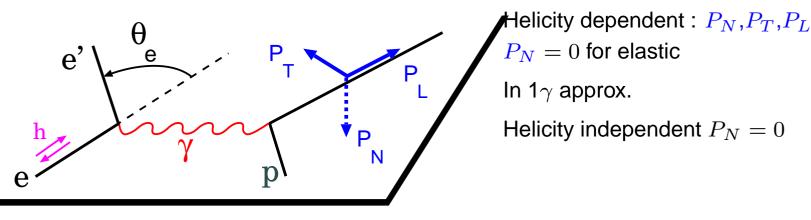


Difficult to model intermediate nucleon states

- ullet G_E/G_M extracted from cross sections and polarization transfer differ.
- Most likely explanation is missing two-photon exchange (TPE) amplitude in extracting G_E/G_M from cross sections
- New paper by J. Arrington, W. Melnitchouk, J. A. Tjon nucl-ex/0702002



- $m{\mathcal{G}}_E/G_M$ extracted from cross sections and polarization transfer differ.
- Most likely explanation is missing two-photon exchange (TPE) amplitude in extracting G_E/G_M from cross sections
- New paper by J. Arrington, W. Melnitchouk, J. A. Tjon nucl-ex/0702002
- One clear signature of TPE is to measure ϵ -dependence of ratio of e^-p/e^+p elastic cross section in Hall B (*A. Afanasev, J. Arrington, W. Brooks, K. Joo, L. Weinstein, E-04-116*)



TPE effects in ep cross section

- $\begin{array}{ccc} \bullet & \text{Just completed} \\ & \text{Hall C experiment} \\ & \text{measured over} \\ & 0.4 < Q^2 < 6 \text{GeV}^2 \\ & \text{and } 0.05 < \epsilon < 1 \end{array}$
- Detect elastically scattered proton in HMS
- Constrain models of TPE
 - non-linearity of $\sigma(\epsilon, \text{ fixed } Q^2)$.
 - Combine with polarization data

Spin Transfer Reaction ${}^{1}\mathbf{H}(\vec{e},e'\vec{p})$

- Need large solid angle device
 - Large calorimeter (1.2x2.4m area) contructed from lead glass contributed by Protvino and Yerevan
- Proton spin measured by second scattering in polarimeter

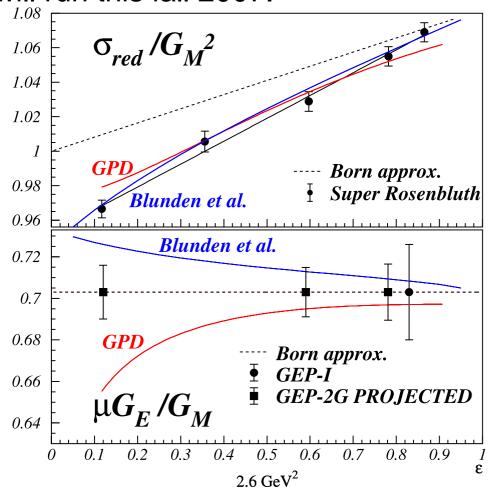
Install FPP in HMS

BigCal in Hall, busy cabling

Thanks to: Albert Shahinyan, Samvel Mayilyan, Juan Cornejo, Omar Moreno, Amber

Marsh, Eric Jensen, Boswyck Offord, Roman Pomatsalyuk, Yuri Melnik, Yuri Goncharenko

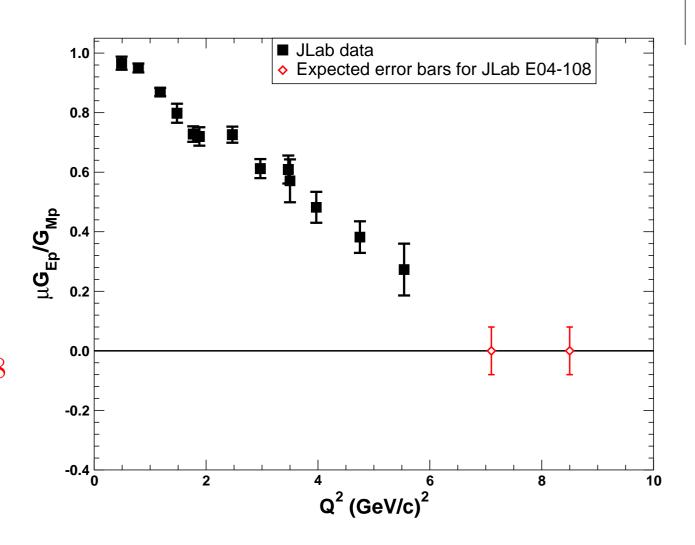
Grad students: Andrew Puckett, Medhi Meziane, Wei Luo



Fpp in HMS

TPE effects in recoil polarization

- Measure ϵ -dependence of $\frac{G_E p}{G_M p}$ extracted from recoil polarization method
- Experiment will run this fall 2007.

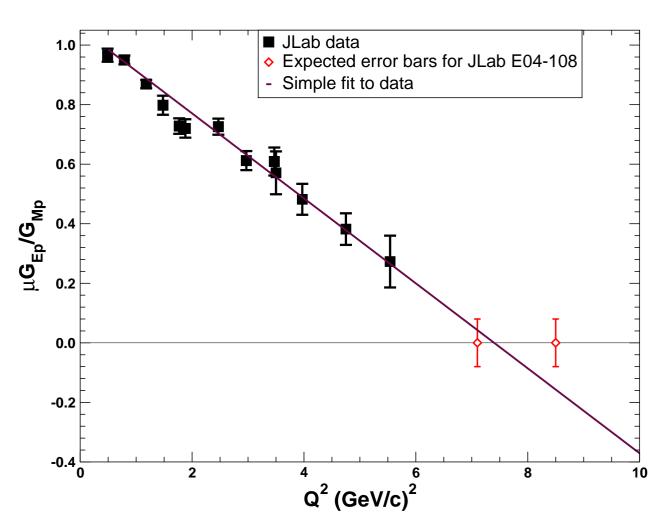

G_{Ep}/G_{Mp} to high Q^2

This fall take data at $Q^2 = 5.2 \; ,$ $\chi = 180^\circ \; \text{in HMS}.$

Systematic error on χ

Spring 2008, take data at $Q^2=7.1,8.5~{\rm GeV^2}$, beam energy of 5.714 GeV.

$$\Delta G_{Ep}/G_{Mp} = 0.08$$


G_{Ep}/G_{Mp} to high Q^2

This fall take data at $Q^2 = 5.2 \; ,$ $\chi = 180^\circ \; \text{in HMS}.$

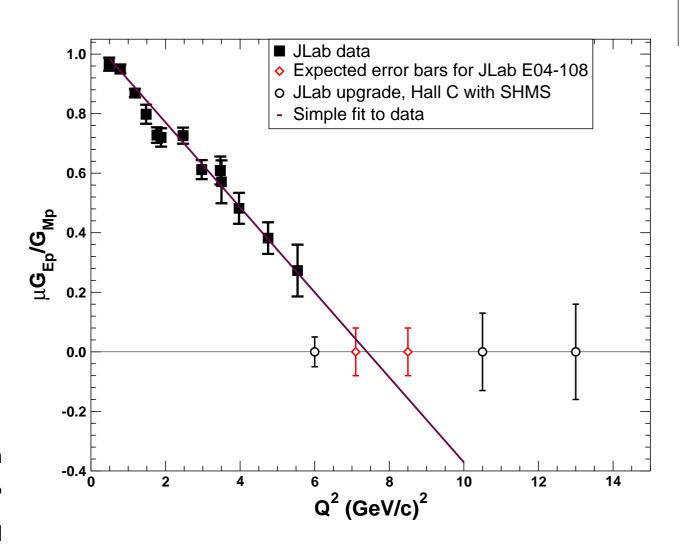
Systematic error on χ

Spring 2008, take data at $Q^2=7.1,8.5~{\rm GeV^2}$, beam energy of 5.714 GeV.

$$\Delta G_{Ep}/G_{Mp} = 0.08$$

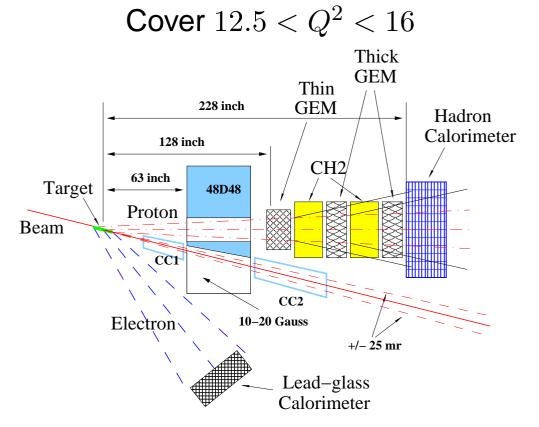
Maybe see zero crossing?

G_{Ep}/G_{Mp} to high Q^2

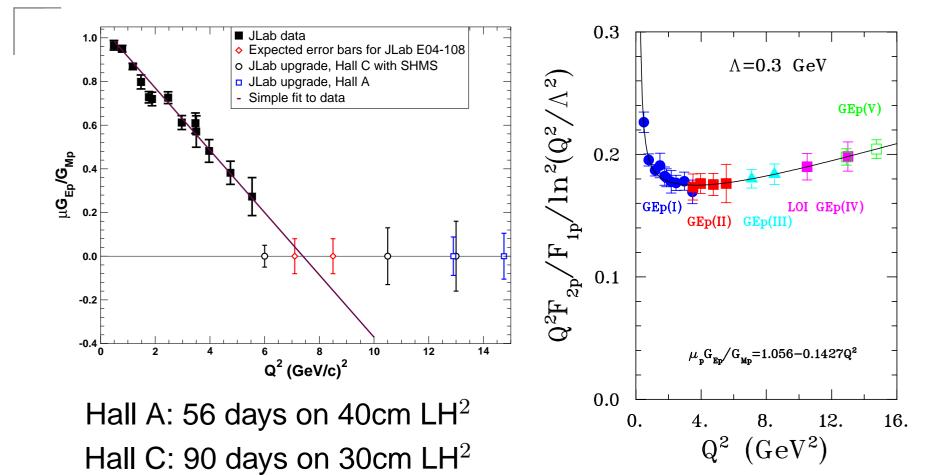

This fall take data at $Q^2 = 5.2 \; ,$ $\chi = 180^\circ \; \text{in HMS}.$

Systematic error on χ

Spring 2008, take data at $Q^2=7.1,8.5~{\rm GeV^2}$, beam energy of 5.714 GeV.


$$\Delta G_{Ep}/G_{Mp} = 0.08$$

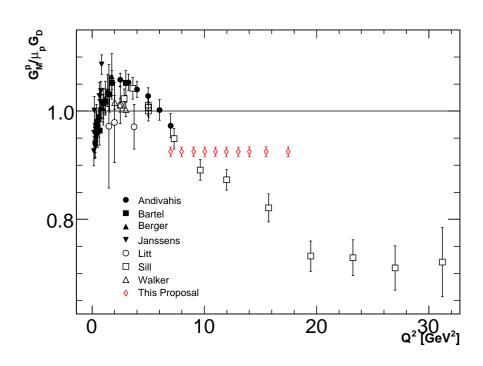
Sometime 20?? with 12GeV beam, move FPP to SHMS and combined with BigCal extend to Q² =
 13 GeV²


Proton G_{Ep}/G_{Mp} in Hall A at 12 GeV

- BigCal at 37° detects electron
- Large $\sigma \approx 35 \mathrm{mr}$ dipole magnet at 14° to detect proton.
- Exit beam pipe thru dipole
- Hadron calorimeter to trigger on > 4 GeV/c protons
- Angular correlation between proton and electron use in trigger.

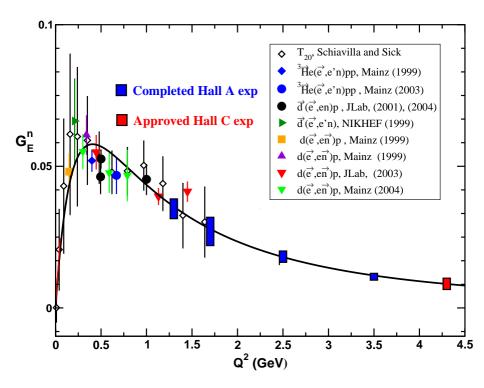
Spokespeople:C. Perdrisat, L. Pentchev, E. Cisbani, V. Punjabi,B. Wojtsekhowski

Projected results for G_{Ep}/G_{Mp} at 12 GeV

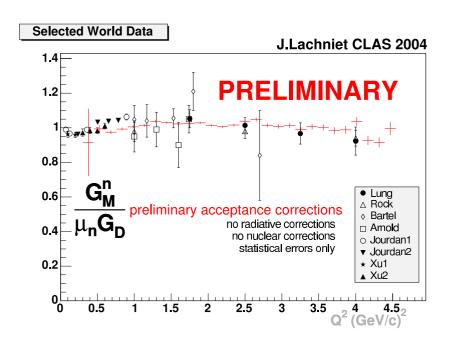


Hall C Summer Workshop – p.11/16

Proton G_{Mp} in Hall A at 12 GeV


- Only SLAC measurements at large Q^2
- Detect scattered electron in HRS
- 31 days, $\sim \frac{1}{2}$ time at $Q^2 = 17.5$
- Reduce uncertainty in G_{Mp} due to TPE and G_{Ep} contribution to cross section.

$$7 < Q^2 < 17.5$$

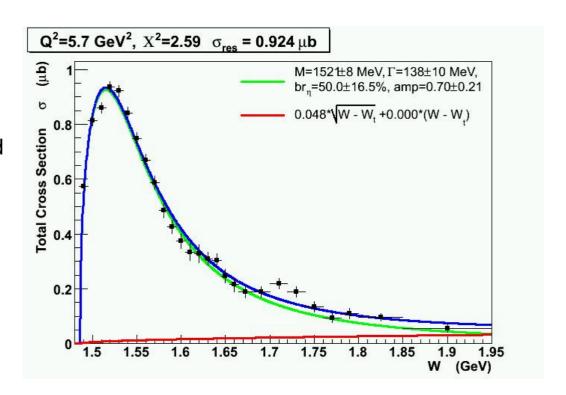

Spokespeople: S. Gilad, B. Moffit, J. Arrington and B. Wojtsekhowski

Neutron Electric Form Factor, G_{En}

- Finished experiment in Hall A at $Q^2 = 1.3$, 1.7, 2.5 and 3.5 by ${}^3 \vec{He}(\vec{e},e'n)$ Ran in Spring 2006, waiting for fi nished analysis!
- Approved experiment in Hall C $Q^2 = 4.3$ by $d(\vec{e}, e' \vec{n})$ waiting to be scheduled!
- ullet With JLab upgrade, both methods can extend to $Q^2 pprox 7~{
 m GeV}^2$

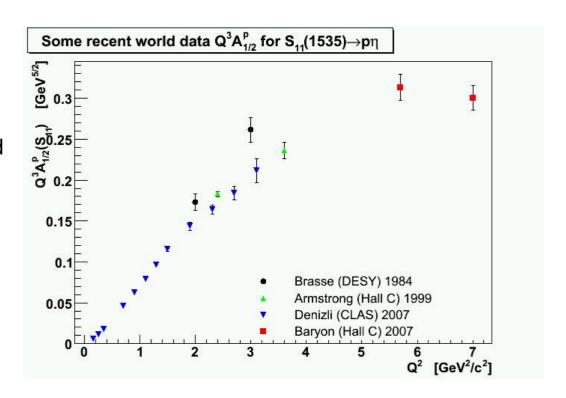
G_{Mn} measurement in Hall B

- Red points new Hall B data (Brooks and Lachinet nucl-ex/0504028)
- Determine neutron efficiency by simultaneous measurement of 1 H(e,e' π^+)n. LH_2 and LD_2 both in beam (5cm apart)
- 12 GeV proposal extends technique to Q² = 14 in 56 PAC days Spokespersons: G. P. Gilfoyle, W. K. Brooks, M. F. Vineyard, K. Hafidi and J. D. Lachniet


S_{11} helicity amplitude in Hall C

Measure cross sections for

1
H $(e,e'p)X~(X=\pi^\circ,\eta,\omega)$


S_{11} helicity amplitude in Hall C

- Measure cross sections for 1 H(e, e'p)X ($X = \pi^{\circ}, \eta, \omega$)
- Measure η c.m. angular distribution and extract total cross section at Q^2 = 5.7 and 6.9 GeV²

S_{11} helicity amplitude in Hall C

- Measure cross sections for 1 H(e,e'p)X $(X=\pi^{\circ},\eta,\omega)$
- Measure η c.m. angular distribution and extract total cross section at Q^2 = 5.7 and 6.9 GeV²
- Convert to helicity amplitude

Summary

- Proton G_E/G_M
 - Spring 2008 in Hall C, Q^2 → 8.5 GeV².
 - With JLab 12 GeV upgrade Q^2 → 15 GeV².
- Neutron G_E/G_M
 - **●** Completed Hall A exp, Q^2 **→** 3.5 GeV²
 - Approved Hall C exp, Q^2 → 4.3 GeV²
 - With JLab 12 GeV upgrade, Q^2 → ≈ 8 GeV²
- Neutron G_M
 - **●** Completed Hall B exp, Q^2 **→** 4 GeV²
 - **●** Possible Hall A exp, Q^2 **→** 8 GeV²
 - With JLab 12 GeV upgrade, Q^2 → ≈ 14 GeV²
- ightharpoonup Proton G_M
 - With JLab 12 GeV upgrade, Q^2 → 17.5 GeV²